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RESEARCH MEMORANDUM 

A CASCADE-CSENERAL-MO"UM TBEORY OF OPERATION OF A 

SUPERSONIC FRoPEm ANNUUTS - 

By Bernard B. Klamns  and  Arthur W. Vogeley 

A cascade-general-momentum theory method for calculat ing  the 
operating  conditions of a supersonic  propeller annulus throughout the 
f l i g h t  Mach number'range i s  presented. The introduction of an   i n f in i t e  
two-dimensional  supersonic  cascade as the method of power absorption ' 

permits the cons idera t ion   of . such .ef fec ts  as drag ~e t o  lift ana thick- 
ness, shock interference,   and  solidity  and appears usef'ul in studying 
general  trends of supersonic  propeller  operation. For s impl ic i ty   in  

on ly  are considered. 
* this presentation,  sections with zero  thickness and drag due t o  l i f t  

c General  flow  patterns  about the cascade and adjuitanents t o  free- 
stream conditions are discussed.  Representative  subsonic,  transonic, 
and supersonic  solutions are given. 

INTRODUCTION 

The simple compressible axial-momentum theory of reference 1 was 
derived  in   an attempt t o  develop a r a t lona l  compressible-flow propeller 
theory,   Solutions  to  the 'f low  equations as presented  in   reference 1 
that were acceptable from physical considerations w e r e  not  found whenever 
the stream Mach number was greater than 1.0 or  whenever power  loading   in  
excess of the amount required to induce  an  inflow Mach number of 1.0 w a s  
used.  Because the simple momentum theory is not  concerned with details 
of flow abou€ th& ac%ual propeller blade, fhis"difficUlty could not be 
resolved. 

I n  this paper the actuator disk i s  replaced  by an i n f i n i t e  cascade 
a representing  an annuJua Q f . 8  supersonic  propeller..  Bj. meam of th i s  

subst i tut ion,  a sat isfactory  physical   p ic ture  of the f l o w  phenomena i s  
obtained.. 

. .  . . 
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The purpose. of this  -pap&.' is .  to present; :the basic  considerations 4 '  

and general method of calculation. .of the  cascade-general-mentum  theory 
together  with  repre-aentative  solutio-  in..the  transonic forwa;rd-speed 
range. As an  incidental   resul t ,  a log ica l  method of extending the simple 
momentum theory is also indicated. 

. .  
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amber  of  blades -. 

blade  chord, f t  

propeller  diameter, . rY; 

force on"3lade eleni&%,Jb/unit   radial   distance 

advance ratlo, Vo/nD . .  

Mach  number - 

maes flow, sluge/sec/unit   -radial   distance 

ro ta t iona l  speed, r p B  . ,. 

power, ft- lb/sec/unit  radid. dietance o r  hp/unit   radial   distance 

. -  

. . . .  . . .  " . . 
" 

, .  .. 

power-disk loading  cQefficient,  p/s 
w 0 3 / 2  

stat ic   pressure,  lb/sq f t  I .  

torque,. f t - lb/uni t   radial   d is tance - 

radius t o  a blade element,. f t  

blade  spacing, b/u, f t  . . . .. 

thrust ,   lb /uni t   radial   d is tance - 

t ranslat ional   velocf ty  of  cascade, f t / s ec  

veloci ty ,   f t /sec 

flow ve loc i ty   r e l a t ive   t o  cascade,  ft/sec 
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f rac t ion  of propeller t i p  radius, */D 

plane of blade leading edges in cascade 1 -  

plane of blade  t ra i l ing-edges i n  cascade . 

power loading,  @/unit   frontal  area 

i n i t i a l  stream conditions 

final wake conditions 

slipstream  locations of reference I, correspond i n  present 
theory to L-.E. and T.E., respectively - 

angle of a t tack,  PC - &,' deg 

blade angle, aeg 

r a t i o  of spec i f ic  heats, 1.4 

. .  - " 

eff ic iency 

density,  slugs/cu ft 

so l id i ty ,  3 Bb 

angle .between r e l a t ive   ve loc i ty  W and  =-plane 

coordinate  axes 

Subscripts : 

a a x i a l  

C cascade 

R l oca l  flow condi t ion  a t   b lade L E .  r e l a t i v e - t o  cascade 

R' l o c a l  flow condition a t  blade T.E. re la t ive   to   cascade  

t tangential ,   transverse 

X propeller radial s t a t i o n  at x 

m -  average  coadition along blade  leading  edges - 
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. . .  

TE average  dondition along blade bailin@; edges" -. * 

0 free s t r k a m  - 
" .   . .  . .  - 1  

3 f i n a l  wake 
. .  - .=. 

General  Considerations 

The cascade-general-momentum theary developed herein differs from 
the simple axial-momentum theory of reference 1 i n  two important  aspects . . .  

as follows:  (a) The actuator disk concept i s  replackd  by  an  infinite 
two-dimensiakl  cascade, and (b) the flow veloci ty  his s ign i f icant  
components i n  the tangential   direction;  thus,   sl ipstre-&-rotation is 
permitted. . 

..-. 

. .  

. .  1 . .  - I .  

The two-dimensional  cascade is  generated a8 shown in figure 1 where " " 

" 

the span-of the a i r f o i l s  i s  talqen t o  be   un i ty   in   the  radial 'direction 
and the diatance . S.- .between a i r f o i l s  (measured from leadlng edge)' 
is - b/a. 

The cascade may  now be introduced  into the idealized flow pa t t e rn  
as shown i n  figure 2 -  where the-mean radius  of 'the flow pat te rn  ia assumed 
constant.   In this f igure  the reference axes .are defined as foIlows: . ' 

- _  
I 

X f l i g h t   d i r e c t i o n  
. .  . . 

Y di rec t ion  of ro t a t ion  

Z radial direct ion 

The bounded region i n  figure 2 i s  described-in  th&following manner: 

' (.a) The of the regLon et s t a t ions  0 and 3 are composed of . - 
I 

. . . .  

planes normal t o  the f l i g h t  direction; . 
. .  . . . .  - .  . " . .  . . . . .  -" 

- .I ~ 

>" 

(b )  Between s ta t ions  0 and L.E :, the "side's" of ..he region are 

ad jacent   a i r fo i l s  akd-extending fofwkrd i n . t h e  f l i g h t  direction. Becauee 
of the in f in i t e   ex t en t  of the generated  cascade-in the Y-direction, the 
net  forces  acting on and t b  net  change in.mimentum across these bound- 
aries.become zero  and  need not be considered  -in €he mathematical treatment. 

-. 

' composed of parallel planes  pasking .t;hrg.jgh. the  leading edges. of- two- - . -  . . .  . -  

. .  

I .  

( c )  Between s ta t ions  T.E. and 3, the "sidesff are 'similarly composed ,. 
. . . .  . - ,, 9." - -, . . . .  .... . . .  - . . .  . .  . . .  ... - -._ . >  ..,- " . . u 

of parallel planes. - - - -  - - . " 
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(d) Between s t a t ions  L.E. and T.E;, the "sides" are composed of the 
upper surface of 0-ne a i r fo i l - and  the- lower surface- of the adjacent   a i r r  
f o i l .  The forces on these sur faces   represent   the ' to ta l   force   ac t ing  on 
each   a i r fo i l .  

(e) Between s ta t ions  L-.E. -and T.E , the  ''top" and ''bottom" are 
composed of  p a r a l l e l  planes separated by a uni t   rad ia l   d i s tance .  

r 

( f )  Between s ta t ions  0 and L.E. and T.E. and 3, the "top"  and 
"bottom" a r e  composed of surfaces which are not   qecessar i ly   paral le l  
but may converge or   diverge  in   order  f o r  the flow t o  adjust t o  free- 
stream p.ressure. 

I n  the  region-between  stations L.E. and T.E., the problem consis ts  
only of the flow within  an  inf ini te  two-dimensional  cascade. In the 
regions between s ta t ions  0 and L.E. and  stations T.E. and 3, tb. solu- - . 

t ion  follows. that of the general-momentum theory. 
-, - 

W h e n  a propeller  annulus is represented  by an i n f i n i t e  two- 
dimensional  cascade, the assumption is made t h a t  arry blade  element i s  
influenced only _by 0,tber blade  elegents r us. Ra+ial 
var ia t ions   in   ve loc i ty  and Mach  number-peller and the 
hel ical   path  taken by an actual.  bl-ade element are ignored.  These  factors 
cause a given  blade  element t o  be influenced  both by other  elements of 
the  same blade and by elements  of  other blades a t - d i f f e r e n t   r a d i i .  These 
mutual interference  effe 'c ts  are left for   future   s tudy.  

. .  

The assumption of independence of annulus  operation  requires that 
the mean radius of the flow  remain  constant  throughout. The effects 
of a constant mean radiue on power, thrust, and  efficiency are 
insignif icant .  

3ecause the method of a t tack  presented i s  n e  direct, it i s  neces- 
sary to  consider  the problem i n   t h e  inverse manner by obtaining a loca l  
f l a i r  pattern  about  the  cascade  andthen.proceedi=  to a consistent set 
of f l ight   condi t iona . 

Two-Dimensional Cascade 

I n  the method of this paper, t h e  flow conditions  about  an  infinite 
two-dimensional  cascade are f i r s t  determined. The flow pat terns  are 
completely  spectfied  by  the  cascade geometry, by the flow  conditione 
in - the  immediate v i c in i ty  of the   l ead ingedge  of the airfoi ls   deaignated 
as r e f a e q e   v a l u e s  by the subscript .  R, and by the pressure immediately 
behind  the  bmzling edge designated by the subscript  R ' .  The d i rec t ion  
of t he  referench-f3ow  with  respect to  the 'blade  determines  the  angle  of 
a t tack a. - 

" - 
" . .  

=- ____ 



I n  order t o  sinlplify-  study. of the .  fiow  a%out a n - i n f i n i t e  two- 
dimensional cascade," ' the  a-ssumption I s  made that the sect ions  are  fric- . . 

t ion less  f l a t  plates of zero thickness, . Becsiise .of- the d i f f i cu l tFes   i n  
handling mixed flow, the  analysis  is r e s t r i c t ed -  to those cases where. .. 

the  flow r e l a t i v e  -to the hla&s 'is everywhere  supersonic. 

.. - 
" 

" 

. . " . . . . ." - 

Baaed on two-dimemional  supersonic-flow theory, six  general   types.  
of f low  pattern for -ti thrusting  annulus appear possible and are illua- 
t r a t e d   i n   f i g u r e s  3 :to 2, i n  .which expansion  fans we indicated by 
dashed l inea  and ahock wavea by s o l i d  lines. The conditions  under which ' 

these  patterns  exist   are  discussed' in  the  following  paragraphs.  It w i l l  
be noted that the  type of pa t te rn  is intimately r eh ted  t o  the a x i a l  
components of MR (X- or axial  Mach number component of $he flow a t  the  
blade leading  edge). Observe t h a t - t h e   a x i a l  component of MR i e  dif-. 
fe ren t  from t h e   f l i g h t  Mach  number whenever induced  infldw i s  present. 

~ . " 

." 

. .  

" 
e..: . " 

Subsonic, interference-free  pat tern (fig. 3 ) . -  When the X- o r  
axial Mach number..cmponent  of the flow a t ' t h e  blade  leading edge (ax ia l  

" . - 

component of MR) is sufficiently subsonic, a l l  shocks and expansions . 

from the-b lade  upper:-sw!face w i l l  pass ahead of the following blades ' 

and the pressure immediately behind the t r a i l i n g  edge i s  for a l l  p rac t i ca l  . 

purposes e q u a l  t o  tk -pressure i'mmediately ahead  of the  leading edge. It 
w i l l  be noted that each blade operates e s sen t i a l ly  independent  of  other 
blades. 

. .. - _ . -  

- -  - - " 

Subsonic, shock interference  pat tern  ( f ig .  4) .- For an axial  cam- 
ponent  of -MR approaching 1.0, the' . trail ing-edge shock is intercepted 
and r e f l ec t ed  by the- following blade. (See- fig. 4.) When this phenom-r 
enon occurs all wave pat terns   or iginat ing a t  the leading edge d isappeq  

at tack a. The portion of the blades ahead.of  the  reflected shock 
produces no l i f t ;  the induced flow reqni red . to  bripg; the ai r  i n t o  the 

' blading at- zero angle"of- a t tack  -1s  gener-ated by t h e  workiM parts of 

- 
c - .  

. .  

I because the air  approaches the blade leading edges a t  zero  angle of 
. ". 

. .. .a 
- 1  
" 

. "  -- - 

f " 1  the blades  behind the reflected shock. ' A  discussion of a mechanism fo r  
. . -  

maintaining  this  zero-angle-of-attack  condition i s  given in   referehce 2. 

. The s t rength and location  of the trail ing-edge shock is f ixed by 
. .  

the  pressure fmmediately  behind t h e   t r a i l i n g  edge. 
. . ." - . .  . .  

Sonic,  shock-expamion  interference  patterns  (fig. 5 ) . -  When the 
a x i a l  component of MR i s  1.0, the  angle of a t tack  .a may be greater... . 
than  zero  and the pat terns  of figure 5 are' poa.sihle, The angle of .at,t&_ck . 

determines  the amount of-leading-edge  expansion that in t e r f e re s  w i t h * &  
following  .blades. -If - the  pressure immediately  behind the trail- edge 
is assumed t o  be suff ic ient ly   higher  than the- pressure a t  t h e ' h d i n g  
edge, an in te r fe r ing  shock Kill e x i s t  as showri i n  figure 56) - The . 

lowest  pressure  possible. at the t r a i l i n g  e%e- for *''.$attern of e&' 
ure 5(a) OCCUTS when the traillng-edge' shock i&cfSects the t r a i l i n g  
edge  of the following blade. T h e  pat5er.i of ifgure ,?(b) .occurs when no 

i .. 
= . - -  

. "" 

..I . .  
" 

" . . 1 .. .. 

" 

. .  

.. 
.. - 

. .. 

" 
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trail ing-edge shock is present and i n  this case the  trailing-edge pres- 
s u e  is equal   to  the pressure on the upper surface  of the blade. 

Although the  pat terna of figures 5(a)  and 5(b) have iden t i ca l  
entering  conditions,  they  could  correspond  to  very  different  operating 
conditions. The pattern  of  f igure 5(b) represente-operation  sl ightly 
below sonic   f l igh t  Mach number with  re la t ively  low power. The pa t te rn  
of f igure > ( g )  is ty-pical of operation at a lower Pl ight  Mach  number 
with  relatively  higher power. 

Supersonic,  expansion-interference  pattern (fig. 6 )  .- When the 
ax ia l  component  of MR is s l i g h t l y  greater than 1.0, the   pa t te rn  of 
f igure 6 is possible. The leading-edge  .expansion i a y  be completely  or 
pa r t i a l ly   r e f l ec t ed  by the following  blase  -and.wKli  determine the pres- 
sure i n  the Fmmedihte v i c in i ty  of   the  blade  t ra i l ing edge. 

" 

Supersonic,   interference-free  pattern  (fig.  7.1.- When the ax ia l  
component of Q is sufficiently  supersonic,  all dist~&bances created 
by any blade  pass  behind a l l  other blades; the pressure   in   the  hmediate 
v ic in i ty  of t h e   t r a i l i n g  edge equals that a t  the leading edge. I n  this 
type of flow  pattern, all. blades operate  exactly as i s o l a t e d   a i r f o i l s .  

To this poin t   in   the   so lu t ion  of the general-problem the cascaae 
representation i s  s u f f i c i e n t -   t o  define the loca l  flow ga t t e rn ,  th rus t ,  
and torque.  force-  of the corresponding  propeller  annulus. It should be 

forces.   Detailed  calculation of t he   e f f ec t  of this interference on 
thrus t ,  power, and eff ic iency are left  for  future  study. 

- obsenred that interference may cause  significant changes i n   t h e  blade 

I 
General Moment Theory 

With conditions a t   s t a t i o n s  L.E. 1 T.E. established by the cascade 
approach,  determination  of  appropriate  uniform flight or free-stream 
conditions i s  made t h r o w  use of the general-momentum-theom. Detkls  
of the complete  shock-expansion patterns  are  not  necessary  since a 
physical flow-aVerLiging process i s  p re sen t   i n  which all expansion  fans 
that  escape  the bladi-ng are  accompanied by shocks of the same family and 
intensi ty .  It is  only  required  that  the air fa- ahead  and  behind  the ' 

blading  reach  the same value of free-stream  pressure w h i l e  properly 
sa t i s fy ing  the equations of mass flow, energy, and momentum t o  account 
for power. and. thrus!. 

It is..a necessarg  condition that the a i r  approaching the  propeller - annulus  acquire-no  net  rotation  or  angular mamenturn. The average  flow 
a t  s ta t ions  0 and L.E. must therefore 6e axial ;  thus, the angular mmentum 
of the incoming air r e l a t i v e   t o  the cascade ia interpreted as being a 
r e s u l t  of the  transverse  velocity of the cascadg-. This transverse - 
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velocity i s  tben   d i rec t ly  a meamre of the  rotat ional   veloci ty  of the 
corresponding  propel.ler  annulw and, i n  combination with. the transverse 
component 'of the for.cek.on the a' i r foi ls  i n  cascade,  determinee-the power 
input. 

. .. 

,. .. . .  

The  average.  flow a t   a t a t i o n  T .E. w i l l  be. nonaxial with en werage 
tangential   velocity '  component t o  .acc.ount for  the ro ta t iona l  momentum - 
acquired 8 8 - 8  r e s u l t  of the  torque on the blades. 

- .  

It I s  intereet ing  to   note  that the  average flow conditions a t  
s ta t ions  L.E. and T.E. are exactly  c&parahie  to  the  conditions a t  
a ta t ion  1 and statim-2,  rekpectively,  immediately-ahead of and.immedi- 
ately  behind, the actuator disk of the conventfonal moment= theory. 
O f  par t icu lar   bpor tance  i s  the  fact-that; .  under certain  conditions  (see 
the cascade  patterns of f igs .  5(b) , 6, and 7 ) ,  power is  .absorbed  and ' . 

th rus t  produced through a pressure drop, ra ther  tlian a pressure rise, 
from statim8 1 to 2. The changes t o   t h e  simple momentum theory of  
reference 1.i.n order- t o  extend-it   through the sonic speed range  are . . 

thereby  indicated. 

The manner i n  whfch the flow  proceeds from' stat ion.  T.E'. t o  s t a t ion  3 
far downstream i s  governed by the  average  axial Mach nmber at . . 
s t a t ion  T.E. 

.. .. 

Whenever the  axial  Mach-  number a t   a t a t i o n  T.E. is 'subsonic  (see 
the cascade patterns of f i g s  . 3, 4, and 5 ( a )  ) , the axia l  ,flow cQmponent . 
behaves as a .  siinple. stiBsonic J e t  i n  which the trailing-edge  conditions 
are  influenced by the adjustment  pr.ocess i n   t h e  wake. As a re su l t ,  only 
one set of free-stre&  conditions i s  consistent w i t h  an  assumed-cascade 
flow pattern.. 

. .  

Whenever the average axial Mach number .a t  s t a t ion  T.E. i s  supersonic 
(see the cascade  patterns of. f igs.  5(b),  6, and 7) ,  the flow downstream 
can exert  110 influence on the blades whatsoever  and  hence may be dis- 
regarded in  thCcaIEulation8. The flow, however, must behave a a  a 
supersonic jet-with the acco-qanying  shock.and  expansion-patterns that 
allow  adJuetment t o  high=- downstream pressures. A detailed  discussion ' 

of a similar process - i s  given in.refer.ence 3, page  172. 

Examination  of t h e  .general shbck and -eq-ansion =t&n about the 
a i r f o i l s  i n  cascade  reveals  that  supersonic axial  f l o w  a t   s t a t i o n  T.E' 
is possible on ly  when the  axial. Mkh niimber at sta%ion L.E. i s  sonic 
or  greater.  Although  scnic inflow l a  a 'necessary  condition; it is not 
a sufficient  condition for the-existence of the  supersonic  jet. Over . 
a limited range  app_&ently  determined by los-ses. such:.&s bla'de drag . .. 

introduced  *ilito  the. system, 'sonic inflai with a subsonic- je t  may e x i s t  
(Bee fig. 5(a) ) .  

" 

. .  
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COMPUTATIOI'?AL PROCEDW 

9 

The  mathematical  solutions  are  relatively  straighforward.  At 
certain  points,  however,  difficulties arise which must be  resolved  by 
reference to the  physical  aspects of the problem: In' order to discuss 
these  situations  the  mechanics of the  method  are  briefly  described. 

, 
It is  necessary  to  develop solutions in an inverse  manner; that is, 

a local  flow  pattern  about  the  cascade is first  determined  and  then 
stream  conditions  consistent  with  this  pattern-are  determined. The 
steps in  obtaining  solutions  are as follows: 

A .  Determination of initial  conditiom. - The cascade  geometry  is 
' fixed  (see  fig. 1) by the propeller annulus  under  study so that 

The quantities % and are functions  primarily of the  power 
and a satiafactory  first  approximation  cannot be given. An exact  solu- 

cessive  approximations. 
- tion  satisfying  the  desired  flight and power  conditions  requires  suc- 



B. Local .floGifielil.'solui;ion. - .%e .?I-& . pakkrn  'about the b ladea  . 

-. 
" 

i n  cascade  operating  under the assumed ini t ia l  conditions i s  calculated 
using  the Prandtl-Meyer re la t ionships  -0he fe rence  4 and the  oblique- 
shock re la t lonship  of reference 5.  Second-order e f f ec t s  of entropy 
losses  across the shocks  and  shock  curvatuke are neglected,  and it i s  
assumed that shock8 and expamiom af opposite families intereect  without 
change i n  direct ion.  Under these assumptions, it w i l l  be found that the 
flow pattern  about the bla5ei in   cascade is consistent.  

.1 . .  
. -  
" 

. . .  . " 

. .  - .  

By use of - th i s   repea t ing   pa t te rn ,  the blade farcbs  and  local  pres- - -- 

cures, ve loc i t ies ,  and -densi t ies  may be obtained. 

. .  c .  Average conditions a t  's tation L.E.- Average conditions a t  - 
. .. 

-I 

s t a t i o n  L.E. m a y  be obtained by means of' the f0lloWing ew.atiom - .  

indicates  that integrat ions are taken Over  one blade spacing at t he  

for  continuity,  

fo r  axial momentum, 

fo r  transverse.momentum, 

and, for   enera   (Enerrn-rnust 'be  conserved;  thue the reference 
conditions are taken 88 a- convenient sample), 

. 

. I-  
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The preceding  equations when so lved   shu l t a i eous ly   l ead   t o  two 
s e t s  of average  conditions  corresponding  to  either a high  or a l o w  value 
of pm. I n  every  case, the high-pressure  solution is selected. ' The 
low-pressure  solution,  corresponding to a supersonic axial Mach number, 
requires a physically impossible  throat  ahead of the  blades. 

The average  axial   velocity of the slipstream a t  station L.E. and 
the  transverse  velocity of the cascade m a y  be determined by 

the  rotational  speed of the corresponding  propeller  annulus  in  revolu- 
t ions  per second becomes 

and the  average axial Mach  number at - s ta t ion  L.E. is . 

D. Average.  conditione a t  s t a t i o n  T.E. - Average conditions a t  
s t a t i o n  T.E. may be  determined i n  a manner , s imi la r   to  that used i n  
finding the condi t ions   a t - s ta t ion  L.E. A-simpler method, however, i s  
aa follows: 

For continuity, 

for axial momentum, 
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for  transverse  momentum, 

, and,  for  energy, . "" 

As before,  when  the  preceding  equationsare  solved  simultaneously 
both a high-  and a low-pressure  solution  are  mathematically  posaible. 
The choice of solution  is  determined  by-examination of the flow pattern. . 

When a shock  exists  in  the  blading,  the  high-pressure  solution  is  selected 
and,  when  no shock exists, the low-pressure  solution  appli'es. . .  " 

. .  

The  axial  and  transverse  components of the  average  slipstream 
velocity  at statim T.E. are now found to. be 

(vm), = W T E  sin dm 

(VT& = u - WT, cos & 

and  the  average  axial  Mach  number-at  station T .E. is 

The  torque  force  per hlade iier unit 
' annulus  is  now 

r = m(V& 

V G  
radial  distance of the  propeller 
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Thrust per unit mas6 flow is-equd to 

L - = -  cos j3x 
m m  

E. Determination of flight conditions.- For the subsonic average 
axia l  Mach nmber at station T.E., the following relationships must  be 
simultaneously  satisfied: 

Po = P3 

P 7 
rn 7 - 1  - + -  

where 
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For the supersonic  average axial Mach number. a t  s t a t ion  T.E., the 
conditions are as follows :- 

For supersonic .Mach  number a t  s w t i o n  L.E., 

" . 

? 

vo = v u  

and, for  sonic axial Mach number a t  s t a t ion  L.E., some freedom i n  the 
choice of. free-stream pressure ex is t s .  The  Lower limit of free-stream 
pressure i.~ .pm, corresponding t o  sonic f l i g h t  Mach number. The. upper 
limit i s  determined by the condition that it muet not be too high to 
prevent the ex i t  flow. Thus, i f  the a i r a t  t h e   t r a i l i n g  edges must 
adjust   to.free-stream pressure. d i r ec t ly  (under the assumption of inde- 
pendence of annulue  operation), this upper limit is determined by the 
presaure rise through a normal shock at the t r a i l i n g  edges. 

- and 
1 

_ .  . ".. 

After po- has been  selected, it follows di rec t ly  that 

F o r - a l l  these fl ight  conditions the efficiency i s  

. .. .. . . . 
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REPRESENTATIVE SOUTTIONS 

Three  representative.  solutions &re presented   in   t ab le  I. They 
il lustrate,   respectively,   subsonic forward speed with  subsonic  inflow, 
subsonic  forward  speed  with  sonic F n f l o w ,  and  supersonic  forward speed. 

No attempt has been made t o  connect the solutions  presented  to any 
specific  propeller,  although it is believed that the conditions Fnves- 
t iga ted  l i e  within the range of  interest   for   aupersonic   propel lers .  The 
solutions are presented  prfmarily t o  show that q e r a t i o n  throughout  the 
Mach  number range misy be atudied. 

When forward  speed  and inflow veloci ty  are both  subsonic, the 
variat ions in Mach number, velocity,  pressure, and density follow the 
general   trends.   established by the  simple axial-mc%nentum theory of refer- 
ence 1. A specific  case  solved by both methods is  presented i n   t a b l e  I1 
f o r  a power disk  loading  coeffic.ient PC of 0.224 and a f l i g h t  Mach 
number of 0.70. 

. .  

The minor differences  present &re due largely t o  consideration  in 
the present  theory of drag due t o  lift associated  with  supersonic  air- 
f o i l s .  Lossea associated  with  this  . d r a g  due t o  l i f t  that were not 
p re sen t   i n  the theory  of"ref.erence 1 cause the reduct ion   in   e f f ic iency  
f r o m  0.974 t o  0.883. 

With subeonic  forward -speed and sonic  inflow-the  average Mach  number 
at s t a t i o n  T.E. may be subsonic or supersonic depending on the  power. In 
the second example of t ab le  I, the forward Mach number i s  high enough 
and the  power input is  low enough so that supersonic  conditione  prevail 
at s t a t i o n  T.E. 

When the  forward  speed is supersonic, as in the th i rd  exampIe of 
table I, the condftions a t  s t a t i o n  T.E. are then supersonic. 

It is  worth  noting that, in each  case  presented,  operation is 
r e l a t ive ly   e f f i c i en t .  

The cascade-general-momentum theory  herein  outlined seems adequate 
in  describing  the  general  aperation of a supersonic prapeller  annulus 
throughout  the  f l ight Mach number range..  Although some problems  con- - 
cerned  with the flow details i n   c e r t a i n   t r a n s i t i o n  regions remain,  they 
appear t o  be amenable t o  further  analysis.  
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Effect8.  such a@. those due to  thickness, shock interference, and 
viscosity may be handled i f  the  local  flow p-attern is determinable  since- - 

a loca l  flow pat tern is the. only requirement  for a solu€ion. The inves- 
t iga t ion  af such f a c t o r K a s   t i p  and shank ef fec ts  and radial   gradients  
t ha t   ex i s t  i n  an actual  .propeller-   but -ire not  coniIdered. i n  the-  present ' -: - - 
theory w i l l  requi2e  considerable  further  develojyient. 

. .. ". 
"" 

, . " . . . 
1 -  

. . : - - . r  

. . .  
" 

I n  i t s  pre-sent form, the  'solution t o  any .particular problem usually - - .  
involves  successive  approximatian. The development of a more- d i r ec t  
method is  needed. -Even i n  irts  present form, however, the method should 
&.usefu l  in establishing  the  general  trends of propeller  operation , 

throughout  .the  tranqonic ,a@ supersonic  flight  regions. - - 

. .  " "  

. .  . 
" ." . .  
" "" 

- 
. .  

. .  
. .  

" - - 
. -. " 
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391.8 

Solation I 
P 
V 

n 
P 

381r.b 
715.5 

.Oaom .-tu 

Solution In 

V 
P 

U 
P 

391.8 
m. 0 

391.8 
1160.0 .ooo58a *ooa586 

1200 1.200 

370.2 
l2l0.3 .ooosa2 

1.260 
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TABm I1 

COMpARISOH OF SOLITTIOR OBTATNBII BY M?,ETBOD OF REFERENCE 1 AND PRBSEFPP THEaRY 

( S O ~ I O l 7  I, TABU I) FOR A FOWEZ-DISK UIA.DINl C O E F F I C ~ ~  PC 

O F . ; O r 2 2 4  AND A FLIGHT MACH rmEIBER OF 0.70 , 

I : .  : I :  , : :  

Station I 0 

Method I Reference 1 I Present 

Mach umber ratio, M/MQ 

VelociB .ratio, V/Vo 

1.ooO 1.ooO 

1.000 1 :m Pressure ratio, p/Bo 

1.ooO  1.000 

Density xatio, P/Po 1.000  1.ooO 

! 

1 or L.E. 2 or T.E. 3 

Reference 1 Present Reference 1 Present 

0 . W  1.053 1-03 0.994 

0.998 

0.998 1.o00 1.026 1.030 

1.000 1 .om 1.039 1.042 

1.054 1 .os 1.000' 

Method Preeent Reference 1 . .  

' 0.974 0.885 

hp/fiq ft 20." M. 65 
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Figure 1.- Generatlon of a two-dimensional cascade t o  represent 
a propeller annulus. 
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Figure 2.- M a t h d t i c  
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Figure 3.-  Flow about an Inf ini te  two-dimensional eupexsonlc cascade 
where the axial ox X-conpnent of Mach number o f  the f l o w  at the 
blade leading edge is sufficiently subsonic 80 that no Interference 
e x i s t s  between the blading. 

.... . 
... I 

.. . 



4 

til 
Iu 

I .  

Figure 4.- Flow about an infinite two-dimensional supersonic  cascade 
where the axial ox X-component. of Mach number of the flaw at the 
blade  leading edge approaches 1 and shock interference e x i s t s  
between the  blading. 
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. .  (a) Pattern when pressure immediately beMnd the  t ra i l ing 
edge is higher  than the  pressure at the leading edge. 
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(a) Pattern  for  pressure immediately behind the   t ra i l ing  edge 
equal t o  pressure on the upper aurface of the blade. 

Figure 5. - Flow about an. Inf ini te  two-dimension&l supersonic  cascade 
where the  axial or X-komponent of Mach number of the flow at the 
blade  leading edge i s  1 8nd shock-expansion Interference  exiets 
between the blading. 
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Figure 6.- Flow about an i n f l rd te  two-dimensional supersonic  cascade 
where the 'ax ia l  or X-component of Mach number of the flaw at the 

., blade  leading edge is superso& and expansion interference existB 
between the blading. 
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Figure 7.- Flow about 811 In f in i t e  two-dlmewiollal sypexeonic c a m d e  
where the axial or..X-component  of Mach  number of the flow at the  
blade leading edge is supersonic and no interference exlste between 
the blading. 
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